
CO452 Programming Concepts

Week 11 - C# Part 2
Sequence, Selection, Iteration

The first basic structure
of all programs

The first basic structure
of all programs

Last Week: Sequence
The sequence is :

• a set of statements that are
performed one after the other

• the order is important

In C#, we put sequence statements
inside a block using { and } brackets

1234567

{
Console.WriteLine("Hello\n");
Console.Write("What town do you live in?");
town = Console.ReadLine();
Console.WriteLine(town + " is a nice place");
Console.WriteLine(“Enjoy programming");

}

Indent within
a block

(loops)
The second basic structure

of all programs

(loops)
The second basic structure

of all programs

while loop
while (condition)
{

// repeated instructions here

}

The 3 types of loop used in C#

do while loop
do
{

// repeated instructions here
}
while (condition) ;

for loop
for (initialise; condition; increment)
{

// repeated instructions here
}

The break
statement
The break
statement

Give us a break

break is used to break out of a
switch statement

(or a loop)

prematurely
and continue with the rest

of the program.

(see the switch example)

break is used to break out of a
switch statement

(or a loop)

prematurely
and continue with the rest

of the program.

(see the switch example)

The continue
statement

The continue
statement

May I continue?
continue can be used in loop statements to skip over
part of the loop and continue to the next repeat
continue can be used in loop statements to skip over
part of the loop and continue to the next repeat

Example
Below is part of a program that performs calculations on
a series of 100 numbers. However, continue is used to
prevent this for the numbers 25 to 50.

for (; ;)
{

}

n = 1 n <= 100 n++

if (n >= 25 && n <= 50) continue ;
// otherwise do the rest of loop

While Loop

Console.WriteLine("Average Mark Calculation\n");
Console.WriteLine("Input Exam Scores Now ");

while (count < MAX)
{

}

average = (double) total / MAX ;
Console.WriteLine("Average mark = " +

average);

int mark, count = 0, total = 0 ;
double average ;
const int MAX = 8 ;

static void Main ()
{

}

count ++ ;
Console.Write("Enter mark for student " + count);
mark = Convert.ToInt32(Console.ReadLine());
total += mark ; // or total = total + mark

// Author : Brian Ward
// Date : 7th Sep 2007

Note the use
of a cast here

For
Loop

Console.WriteLine(" \t\t Shares Value Calculation\n ");
Console.Write("\t\t Input current Value of shares : ");
value = Convert.ToDouble(Console.ReadLine()) ;

for (year = 1; year <= MAX_YEARS; year++)
{

}

Console.WriteLine("\nAfter " + MAX_YEARS +
" years, your shares will be worth £" + value

) ;

int year; // year counter
double value, gain; // share value and gain

static void Main ()
{

}

gain = value * INCREASE;
value = value + gain;
Console.WriteLine(year + "\t" + gain

+ "\t" + value);

Console.WriteLine("YEAR \t GAIN \t VALUE");

const int MAX_YEARS = 4;
const double INCREASE = 0.1;

Selection
The third basic structure

of all programs

Selection
The third basic structure

of all programs

// instructions here done once

if(..) statement
if (condition)
{

// instructions here done once
// only if the condition is true

}

The 2 types of if() statement

if (..) else statement
if (condition)
{

// done if condition TRUE
}
else
{

// done if condition FALSE
}

Conditions
 The path taken

depends on a
condition

 If the condition is true,
one path is taken

 If it is false, another is
followed

How does the
program
know which
path to take?

Relational Operators
used in true/false conditions:

<
>
<=
>=
==
!=

Less than
Greater than
Less than or equal
Greater or equal
Equal to
Not equal to

if …

Some Examples
if …
if …
if …

(count == 10)
(age >= 65)
(money < 5000)

conditions

Relational Operators
Relational operators

== != < > <= >=

used in conditions (see earlier slide)

Relational operators

== != < > <= >=

used in conditions (see earlier slide)

ExampleExample
if (mark < 40)
{

}

Console.Write("You failed the exam");
failcount ++ ;

Logical Operators
Logical (or Boolean) operators

&& (and) ||(or) !(not)
Used to combine 2 or more conditions
Some examples :

if (price <= 50 && size = 38) …
if (choice == "A" || choice == "B") …
if ! (mark <= 100 && mark >= 0) …

Logical (or Boolean) operators

&& (and) ||(or) !(not)
Used to combine 2 or more conditions
Some examples :

if (price <= 50 && size = 38) …
if (choice == "A" || choice == "B") …
if ! (mark <= 100 && mark >= 0) …

ExampleExample
if (age >= 13 && age <= 19)
{

}

Console.Write("You are a Teenager");
teencount ++ ;

The Switch
Statement

for
multiple selection

The Switch
Statement

for
multiple selection

Example Switch Program
static void Main()
{

}

Console.WriteLine(" Exam Comments ");
Console.Write(" Enter grade achieved ");
grade = Console.ReadLine();
grade = grade.ToUpper() ; // convert to upper case

switch (grade)
{

}

string grade ; // exam grade

case "A" : Console.WriteLine(" Excellent Result "); break ;
case "B" : Console.WriteLine(" Very Good "); break ;
case "C" : Console.WriteLine(" Well Done "); break ;
case "D" : Console.Writeline(" You Passed "); break ;
case "E" : ; // falls through to the next case
case "F" : Console.WriteLine(" Sorry You Failed ! "); break;
default : Console.WriteLine(" Error .. Unrecognised grade ");

break ;

Console.WriteLine(" The Seasons of the Year ");
Console.Write(" Enter the month number (1 TO 12) ");
month = Convert.ToInt32(Console.ReadLine());

switch (month)
{

}

int month ; // number of the month

static void Main ()
{

}

case 11: case 12: case 1: case 2:
Console.WriteLine(" It is Winter "); break;

case 3: case 4: case 5:
Console.WriteLine(" It is Spring "); break;

case 6: case 7: case 8:
Console.WriteLine(" It is Summer ") ; break;

case 9: case 10:
Console.WriteLine(" It is Autumn ") ; break;

default:
Console.WriteLine(" Error in month number ");

break;

Brian Ward Slide 20

How to design
a program

(9 step process)

How to design
a program

(9 step process)

Brian Ward Slide 21

Designing & writing programs: Summary

Preparation Stage

1. Understand the Problem
In the real world:

Analyse problem, establish requirements

Design Stage

2. Input-Output Diagram (ins and outs)

3. Identifier List (names of variables)

4. Algorithm (method of solution)

5. Test Plan (data for later tests

+ expected results)

Implementation Stage

6. Source Code (write C#)

7. Compile (translate C#
into machine code)

Testing Stage

8. Run the program

9. Test using Test Plan data

(recording results and correcting code)

The 9 Step
Process

A full example, using the 9 steps

Brian is going to run round a track, but he is
concerned about his heart. He should only run
while his heart rate is less than 130.
We will check his heart rate before the start, to
make sure that it is OK to begin and check again at
the end of each lap to see if it is OK to do another.
He should stop as soon as his heart_rate reaches
130. We will output how many laps he completed.

1: Understand the Problem

2: Input-Output Diagram

Program
count

heart_rate
heart_rate

3: Identifier List

Identifier Type Meaning

heart_rate int Heart rate

count int Count of laps done

4: Algorithm

1. set count to zero
2. Input heart_rate
3. while heart_rate < 130

a. add 1 to count
b. Output current count
c. input heart_rate

end_while
4. Output count
5. Output heart_rate

5: Test Plan

Test
No

Inputs Expected
Output

Actual
Output

heart_rate count count

1 80
140

85 100 125 4

Results are entered later, in step 9Results are entered later, in step 9

3 100 120 130 2

2 140 0

4 80
128

90
131

110 129 5

6: Source Code

Console.Write(" Enter heart rate : ");
input = Console.ReadLine();
heart_rate = Convert.ToInt32(input);

while (heart_rate < 130)
{

}
Console.WriteLine("Completed " + count + " laps");
Console.WriteLine("Final Heart rate is " + heart_rate) ;

int count = 0; // initialise lap counter to zero
int heart_rate; // runner's heart rate
string input;

static void Main ()
{

}

count++;
Console.WriteLine("Running lap " + count) ;
Console.Write(" Enter heart rate again : ");
input = Console.ReadLine();
heart_rate = Convert.ToInt32(input);

This is an
example of
the Read-
Ahead
technique

He
7 and 8 : Compile and Run the Program

80Enter heart rate :
Running lap 1

85

Completed 4 laps
Final Heart rate is 140

Enter heart rate again :
Running lap 2

100Enter heart rate again :
Running lap 3

125Enter heart rate again :
Running lap 4

140Enter heart rate again :

Test
No

Inputs Expected
Output

Actual
Output

heart_rate count count

1 80
140

85 100 125 4

3 100 120 130 2

2 140 0

4 80
128

90
131

110 129 5

9 : Test the Program

4

0

2

5

More than One Condition (using &&)
Sometimes we want more than one condition to control a loop.
In the lap-running program, we may want to check our heart_rate,
but also do no more than 20 laps

Console.Write("Enter heart rate : ");
input = Console.ReadLine();
heart_rate = Convert.ToInt32(input);
while (heart_rate < 130)
{

count++;
Console.WriteLine("Running lap " + count);
Console.Write(" Enter heart rate again : ");
input = Console.ReadLine();
heart_rate = Convert.ToInt32(input);

}
Console.WriteLine("Completed " + count + " laps");
Console.WriteLine("Final Heart rate is " + heart_rate);

The && (and)
means both
conditions must
be TRUE to
keep repeating
the loop.
As soon as one
is FALSE the
loop will stop.

&& count < 20)

Brian Ward Slide 29

The Last Slide

Extra ReadingExtra Reading

Why are there 2 Equals?

This is the assignment operator.
It is used to change the value of a
variable e.g.

Equals (=)

total = num1 + num2 ;

This is a relational operator.
It is used in conditions.
Nothing is changed e.g.

Equals (==)

if (total == 100) ….

total
is

changed

total
stays

the same

Brian Ward Slide 32

Initialising Variables
Variables can be given an initial value at
the same time as they are declared

e.g.

int count = 0 ;

float price = 7.54 ;

string name = "Joe Smith" ;

Brian Ward Slide 33

Multiple Assignments

Multiple variables of the same type can
be assigned the same value

e.g.

a = b = c = 8 ;

price1 = price2 = 7.54 ;

adult_count = child_count = 0 ;

OperatorsOperators

Relational Operators
Relational operators

== != < > <= >=

used in conditions (see earlier slide)

Relational operators

== != < > <= >=

used in conditions (see earlier slide)

ExampleExample
if (mark < 40)
{

}

Console.Write("You failed the exam");
failcount ++ ;

Logical Operators
Logical (or Boolean) operators

&& (and) ||(or) !(not)
Used to combine 2 or more conditions
Some examples :

if (price <= 50 && size = 38) …
if (choice == "A" || choice == "B") …
if ! (mark <= 100 && mark >= 0) …

Logical (or Boolean) operators

&& (and) ||(or) !(not)
Used to combine 2 or more conditions
Some examples :

if (price <= 50 && size = 38) …
if (choice == "A" || choice == "B") …
if ! (mark <= 100 && mark >= 0) …

ExampleExample
if (age >= 13 && age <= 19)
{

}

Console.Write("You are a Teenager");
teencount ++ ;

Arithmetic Operators

The Increment operator (++)The Increment operator (++)

normal arithmetic operators
+ - * / and % (used for remainder (modulo) division)

Instead of :
count = count + 1 ;

// add 1 to count
we can do :

count ++ ;

The Decrement operator (--)The Decrement operator (--)
Instead of :

count = count - 1 ;
// subtract 1 from count

we can do :
count -- ;

ExampleExample
if (mark >= 40)
{

}

Console.Write("You passed the
exam");
passcount ++ ;

Arithmetic assignment operators

+=+=
Instead of :

num = num + 3 ;
// add 3 to num

we can do :
num += 3 ;

These are : += -= *= /= and %=

-=-=
Instead of :

x = x - y ;
// subtract y from x

we can do :
x -= y ;

==
Instead of :

gain = gain * 1.10 ;
// multiply gain by 1.10

we can do :
gain *= 1.10 ;

/=/=
Instead of :

num = num / 2 ;
// divide num by 2

we can do :
num /= 2 ;

The arithmetic and the reassignment are done in one statement

Brian Ward Slide 39

Alternative Input method

input = Console.ReadLine();
number = Convert.ToDouble(input);
input = Console.ReadLine();
number = Convert.ToDouble(input);

number = Convert.ToDouble(Console.ReadLine());number = Convert.ToDouble(Console.ReadLine());

Instead of :

We can use one statement :

Brian Ward Slide 40

Alternative input methods

input = Console.ReadLine();

then
number1 = int.Parse(input);
or
number2 = float.Parse(input);
or
number3 = double.Parse(input);

input = Console.ReadLine();

then
number1 = int.Parse(input);
or
number2 = float.Parse(input);
or
number3 = double.Parse(input);

